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Abstract—This project addresses the intricate relationships
between vegetation, rainfall, and land temperature, aiming to
unravel their profound impact on agriculture and ecosystem
health. The significance of this work lies in optimizing agri-
cultural practices for a sustainable food supply and guiding
conservation efforts. The technical challenges involve deciphering
non-linear interactions among environmental variables and de-
veloping models capable of capturing these complexities. Our
approach integrates decision tree methodologies, focusing on
vegetation dynamics, to provide a holistic analysis. This project
also analyzes the importance of land temperature and rainfall
over each month to capture the seasonal impact on vegetation.
This project’s importance is underscored by its potential to
offer actionable insights for policymakers, agriculturists, and
conservationists, contributing to the development of sustainable
practices in the face of evolving climates.

I. INTRODUCTION

In the realm of environmental dynamics and agriculture, our
project embarks on a quest to unravel the intricate relationships
between crucial factors that shape ecosystems. Focused on
geospatial data analysis, we delve into the profound influences
of vegetation, rainfall, and land surface temperature on the
health and productivity of our vital ecosystems. By harnessing
spatial raster data encompassing vegetation index, precipita-
tion, and temperature, along with geographic features like
lakes and rivers, we aim to construct a comprehensive decision
tree model to decipher the correlations that underpin the
vulnerability of specific regions to environmental changes. The

significance of our exploration lies not only in the scientific
intricacies it unravels but also in its profound societal applica-
tions. As we navigate the labyrinth of environmental factors,
our insights hold the potential to revolutionize agricultural
practices, ensuring a resilient and abundant food supply for
our growing global population. The meticulous analysis of
rainfall, land temperature, and vegetation provides a nuanced
understanding of regions susceptible to environmental shifts,
thereby guiding strategic initiatives to fortify global food
security. Moreover, our findings contribute to conservation
endeavors, offering data-driven insights for reforestation plans
that combat deforestation in vulnerable areas. Beyond agri-
culture, policymakers can leverage these revelations to craft
eco-friendly land use and environmental policies, fostering a
sustainable planet and an improved quality of life for all. In

examining the intricate relationship between vegetation and
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surface temperature, recent studies have provided valuable
insights, particularly in the context of the Tokyo region during
winter [1]. Utilizing remote sensing data and ground-based
measurements, the authors of the first study employed re-
gression analysis to unravel the impact of vegetation on both
surface temperature and composition. Complementing this, the
second study delved into crop yield prediction, incorporating
weather data and NDVI time series through a time series
analysis-based model [2]. These studies, while illuminating,
are region-specific and season-bound, underscoring the need
for a broader, more adaptable approach. Building upon these

foundations, the current approach to predicting vegetation
involves an exhaustive data collection process, as evidenced by
decision Trees [3]. Drawing from long-term crop yield data,
along with qualitative and quantitative environmental factors
such as tillage systems and land temperature [3][4], decision
Trees offer a comprehensive analysis. However, this method’s
potential limitation lies in its ability to capture complex,
non-linear relationships between environmental factors and
crop yield. While embracing various decision Tree methods,
including Classification and Regression Tree (CART) and
Conditional Inference (CI) [3], there is room for exploring
alternative machine learning models, such as ensemble meth-
ods or neural networks, to address the intricacies of this
relationship more effectively. This introduction sets the stage
for a deeper exploration of current methodologies, their merits,
and the evolving landscape of predictive modeling in the
realm of vegetation and environmental dynamics. Existing

methods for predicting vegetation index based on environ-
mental factors often fall short when facing the intricacies
of seasonal variations. Our novel Decision Tree Regression
(DTR) approach tackles this challenge head-on by tailoring
its models to each month of the year. Unlike static models
that overlook the shifting dynamics between factors like land
surface temperature, rainfall, and NDVI, DTR dynamically
adapts its decision rules, capturing the unique seasonal interac-
tions that influence vegetation health. This granular approach
not only promises significantly more accurate predictions but
also unveils the deeper interplay between environment and
vegetation throughout the year, enriching our understanding
of ecosystems and empowering informed decision-making in
resource management.



II. PROBLEM DEFINITION
A. Basic Concepts

NDVI (Normalized Difference Vegetation Index): A dimen-
sionless satellite-derived metric ranging from -1 to 1, quantify-
ing vegetation photosynthetic activity and greenness. Higher
NDVI signifies denser vegetation and active photosynthesis
[5]. Land Temperature (LST): Surface temperature of the land,
directly measured or derived from satellite data, impacting
evapotranspiration, plant growth, and ecosystem functioning
[6]. Rainfall: Precipitation reaching the ground, influencing
soil moisture, water availability for plants, and vegetation
growth [7].

B. Formal Definition

This research aims to develop a robust and accurate model
for predicting NDVI values in a specific region, based on his-
torical and/or real-time data on land temperature and rainfall.

1) Input

We will use the dataset which will consist of real-time cli-
mate snapshots of the world in csv format of size 3600x1800.
We will focus on monthly records from 2022.

NDVI Data:

o This map shows where and how much green vegetation

is grown

e A map will have a region colored with an index value

from -0.1 (light) to 0.9 (dark)

Land Temperature Data:

o This map depicts the current global distribution of land
surface temperature in Celsius.

« Each region on the map is color-coded, with shades rang-
ing from deep blue (-25°C) to vibrant yellow (+45°C).
The color legend on the right illustrates the temperature
range corresponding to each color.

o (Include code to embed your map image here)

Rainfall data:

o The map shows where and how much precipitation fell
around the world in millimeters

o A map will have a colored region ranging from 1.0 to
2000 mm of rainfall.

2) Output

Predicted NDVI values for the target region Object:

The focus is on model development for prediction, not

simulating the intricate biophysical processes governing NDVI
(Wang et al., 2015).

C. Example

Consider a forest manager in the Amazon rainforest aiming
to monitor deforestation and assess forest health. Ground-
based NDVI measurements are impractical for vast areas, but
land temperature and rainfall data are readily available from
satellites. This research addresses the problem of building a
model that accurately predicts NDVI in the rainforest based
on these readily available data sources, enabling the forest
manager to track deforestation, monitor forest health, and
inform sustainable forest management practices.

III. PROPOSED SOLUTION
A. Overview

To understand the relationships between environmental fac-
tors and vegetation, we propose utilizing a Decision Tree
Regression (DTR) model. This model will predict vegetation
index (NDVI) based on land surface temperature (LST) and
rainfall data. By analyzing the decision tree structure, we will
gain insights into the specific rules and thresholds governing
these relationships.

We will analyze the DTR structure for each month of 2022,
allowing us to investigate:

o Temporal Variations: How the decision rules and feature
importance change across different months, revealing
seasonal impacts on vegetation.

o Correlation Analysis: How the relationships between
LST, rainfall, and NDVI evolve over time, potentially
identifying long-term trends or year-on-year fluctuations.

B. Major Steps

1) Data Acquisition and Preprocessing

« Read monthly NDVI, LST, and rainfall data globally in
2022.

« Handle missing values and ensure spatial alignment of
dataframes.

« Flatten dataframes and combine LST and rainfall features
into a feature matrix (X).

« Extract NDVI values as the target vector (y).

2) Decision Tree Training
next line Initialize a DTR model. Train the DTR model on
the preprocessed data (X, y) for each month of 2022.

3) Model Evaluation and Analysis

« Evaluate the DTR performance on the test data for each
month using Mean Squared Error (MSE) and R-squared
R? metrics.

o Analyze the decision tree structure for each month to
understand the specific rules and thresholds influencing
NDVI.

o Identify the relative importance of LST and rainfall
features in each month based on splitting rules.

« Investigate the temporal variations in the decision tree
structure and feature importance across months, uncover-
ing seasonal and year-on-year trends.

C. Improved Understanding with Seasonal Trends

While current methods effectively predict vegetation health
based on environmental factors, they often overlook the crucial
role of seasonal trends. Our proposed DTR approach will take
these dynamics into account, enriching our understanding of
how LST, rainfall, and NDVI interact throughout the year.

D. Applications and Outcomes

The interpretable insights from the DTR model will pro-
vide a clear understanding of the relationships between LST,
rainfall, and NDVI. This knowledge can be used for:



o Commercial farmers: By analyzing DTR predictions tai-
lored to specific months and seasons, farmers can opti-
mize water resource allocation. Consider summer months,
where land surface temperature maps pinpoint areas
prone to heat stress. Armed with this knowledge, farmers
can prioritize irrigation in these sections, ensuring optimal
crop growth while minimizing water waste. Similarly,
winter maps can identify orange groves at risk of frost
damage, allowing proactive measures like frost covers or
irrigation to be implemented.

« Vegetation monitoring: Seasonal variations in DTR pre-
dictions can highlight areas experiencing unexpected
NDVI decline. For instance, winter NDVI plummeting in
a typically stable evergreen forest could signal a poten-
tial disease outbreak or disturbance event. By focusing
conservation efforts on such areas during specific sea-
sons, proactive interventions can be implemented before
widespread damage occurs.

o Climate change assessment: Monitoring how seasonal
relationships between LST, rainfall, and NDVI shift over
time can provide valuable insights into the long-term
impact of climate change on vegetation health.

¢ Adaptive land management: By understanding how en-
vironmental factors influence vegetation across different
seasons, we can develop strategies for adapting land
management practices to changing environmental con-
ditions and ensuring the long-term sustainability of our
ecosystems.

This DTR-based approach offers a transparent and informa-
tive way to understand the complex relationships between en-
vironmental factors and vegetation. By analyzing the decision
tree structure and temporal variations, we can gain valuable
insights for sustainable land management and conservation
practices in the study area.

E. Example

We conducted the analysis for each month of 2022. Here
we will discuss the analysis for January 2022.

Dataset: We start with csv files for NDVI, Land Surface
Temperature, and Rainfall. Each file is of size 3600x1800

Data pre-processing: We preprocess these data by convert-
ing them into a flattened array. We then created a data frame
with columns NVDI, Land temperature, and rainfall. We
dropped data where the values were undefined and the final
data frame consisted of 1,132,116 data points. We used land
temperature and rainfall columns for features and NDVI for
the target

Number of Samples: The data is split into training and
testing sets using an 80-20 ratio. With a training set of size
905,692 and a testing set of size 226,424.

Training the model: We train a decision tree regression
model on the training data set.

IV. EVALUATIONS
A. Goal

This experimental evaluation aims to assess the efficacy
of a decision tree regression model in predicting Normalized
Difference Vegetation Index (NDVI) based on land temper-
ature and rainfall data. We further investigate the influence
of seasonality on both the model’s performance and the
importance of environmental factors. Our specific research
questions are:

e Model Accuracy: How accurately can the decision tree
model capture the relationship between NDVI and land
temperature and rainfall?

o Predictive Power: Can the model effectively predict
NDVI values based on land temperature and rainfall data?

o Feature Importance: Which environmental factors play
the most significant roles in influencing NDVI, as de-
termined by feature importance analysis?

o Seasonal Variations: How do the relative contributions
of land temperature and rainfall to NDVI vary across
different seasons?

B. Method

We utilize one year (January-December 2022) of monthly
NDVI, land temperature, and rainfall data. For each month,
we:

« Preprocessing: Create a DataFrame with land temperature
and rainfall as features and NDVI as the target variable.

« Data Split: Divide the DataFrame into training (80%) and
testing (20%) sets.

e Model Training: Train the decision tree model on the
training set.

o Performance Evaluation: Evaluate the model’s perfor-
mance on the testing set using:

— Mean Squared Error (MSE): Measures the average
squared difference between predicted and actual NDVI
values.

— R-squared: Represents the proportion of variance in
NDVI explained by the model.

o Seasonal Comparison: Store the evaluation metrics and
feature importance results for each month in separate
arrays for further inter-monthly comparisons.

o Analysis: Conduct correlation analysis to examine the
relationships between NDVI and environmental factors,
and analyze feature importance values to identify the key
influential factors for each month.

C. Results

We used violin plots of visualize the relationship between
NDVI and features like land temperature and Rainfall. We
created a heatmap to show the correlation matrix. These violin
plots would allow you to visually assess how the NDVI values
vary across different Land temperature and Rainfall conditions.
We collected violin plots for January, April, July, and October.
We also plotted the feature importance of the decision model
for each month over the year. We also collected the mean-



squared error and r-squared for each month and presented them
in a table. We calculated the average mean-squared error and
r-sqaured.
o Land temperature and NDVI Violin Plots for January
(Figure 1), April (Figure 2), July (Figure 3), and October
(Figure 4)
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« Rainfall and NDVI Violin Plots for January (Figure 5),
April (Figure 6), July (Figure 7), and October (Figure 8)
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Fig. 5. January Rainfall Vs NDVI
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Fig. 6. April Rainfall Vs NDVI

« Land temperature features importance over months (Fig-
ure 9)

« Rainfall features importance over months (Figure 10)

« Evalution metric for each month (Figure 11)

« Average mean squared error: 0.024 and Average r-squared
score: 0.64

D. Analysis of the Experimental Results

The first set of violin plots suggests a non-linear correlation
between NDVI and land temperature. Initially rising with
temperature, NDVI declines after reaching approximately 25
degrees Celsius. The non-linear relationship between land
temperature also consists of data from January, April, July, and
October The second violin plot indicates a positive correlation

between NDVI and rainfall. As rainfall increases, so does the
vegetation index, suggesting a positive effect on the vegetation
index. The correlation is observed throughout the year. The av-

erage MSE of 0.024 suggests accurate predictions on average.
Additionally, the average R-squared value of 0.64 indicates
that approximately 64% of the variance in NDVI is explained
by the model, highlighting its effectiveness in capturing the
underlying patterns. The land temperature feature importance

plots show that land temperature plays more importance
from May to September. The rainfall feature importance plot
suggests that rainfall plays more importance in vegetation
from October to April. This suggests that during generally
warmer seasons land temperature plays more importance in
predicting vegetation and for cooler seasons rainfall plays
more importance in predicting vegetation.



NDVI

importance

Importance

15.56 421 4.95 55.23  107.25 327.39  598.49 15874 78515 152453

Rainfall
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Fig. 8. October Rainfall Vs NDVI

Land Temperature Importance for Each Month
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Month

Fig. 9. Land Temparature importance over months

Rainfall Importance for Each Month
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Fig. 10. Rainfall importance over months

Metrics for Each Month:

month mse r_squared feature_importances
0.029922 0.620098 [0.674175515920506, 0.32582448407949394]
0.024183  0.676824 [0.39452035151503445, 0.6054796484849655]
0.022195  0.687038 [0.31522214983510405, 0.6847778501648959]
0.023761 0.644417 [0.42435774939061166, 0.5756422506093885]
0.024547  0.603952 [0.7941681825790206, 0.20583181742097947]
0.020413  0.688033 [0.7712001916736339, 0.22879980832636612]
0.021970  0.692429 [0.7567727876635583, 0.24322721233644173]
0.023554 0.659961 [0.7848050292944891, 0.2151949707055109]
0.020676 0.663630 [0.7659510169933874, 0.23404898300661267]
0.025161 0.588242 [0.30107495783156324, 0.6989250421684368]
0.031503 0.526607 [0.4352663261423767, 0.5647336738576234]

0.028095 0.613425 [0.4381751440685917, 0.5618248559314084]

Fig. 11. Evaluation Metrics over months

V. CONCLUSION

In conclusion, this study aimed to analyze the correlation
between vegetation index and key environmental factors, such
as temperature and rainfall. Our contribution to existing liter-
ature lies in the comprehensive exploration of how seasonality
impacts these correlations. Utilizing global data on NDVI,
Land Surface Temperature, and rainfall for each month of
2022, we meticulously preprocessed and partitioned the data
into training and testing sets. Through the implementation
of a decision tree regression model, our evaluation metrics,
including mean squared error and r-squared, showcased the
model’s robust performance.

The experimental findings reveal a nuanced relationship
between land temperature and NDVI, characterized by a non-
linear association, while rainfall exhibited a positive linear
relationship with NDVI. Notably, the study identified distinct
periods of significance, with land temperature playing a crucial
role from May to September and rainfall exerting influence
from October to April. The low mean squared error signifies
the decision tree model’s proficiency in predicting NDVI, and
the substantial r-squared value of 0.64 indicates that 64

In terms of future research directions, expanding our anal-
ysis to consider factors like proximity to water bodies could
enhance the precision of vegetation predictions for specific
regions. Additionally, employing clustering models may prove
valuable in identifying hotspots where vegetation is particu-
larly susceptible to changes in environmental factors. These
avenues hold the potential to deepen our understanding and
refine predictions in the dynamic interplay between vegetation
and environmental conditions.
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